
SweepSense: Ad Hoc Configuration Sensing Using  
Reflected Swept-Frequency Ultrasonics 

Gierad Laput      Xiang ‘Anthony’ Chen      Chris Harrison 
Human-Computer Interaction Institute 

Carnegie Mellon University 
5000 Forbes Avenue, Pittsburgh, PA 15217 

{gierad.laput, xiangche, chris.harrison}@cs.cmu.edu 
 
 
ABSTRACT 
Devices can be made more intelligent if they have the abil-
ity to sense their surroundings and physical configuration. 
However, adding extra, special purpose sensors increases 
size, price and build complexity. Instead, we use speakers 
and microphones already present in a wide variety of devic-
es to open new sensing opportunities. Our technique sweeps 
through a range of inaudible frequencies and measures the 
intensity of reflected sound to deduce information about the 
immediate environment, chiefly the materials and geometry 
of proximate surfaces. We offer several example uses, two 
of which we implemented as self-contained demos, and 
conclude with an evaluation that quantifies their perfor-
mance and demonstrates high accuracy. 
Author Keywords: Acoustic sensing; mobile devices; inter-
action techniques; novel input. 
ACM Classification: H.5.2 [Information interfaces and 
presentation]: User Interfaces - Input devices and strategies. 

INTRODUCTION 
Today, almost all general-purpose computing devices con-
tain a speaker and microphone. We propose utilizing these 
ubiquitous sensors to bring novel sensing abilities to devices 
without extra or special hardware (e.g., [8,11]). Specifically, 
we emit inaudible frequency sweeps using the built in 
speaker, and capture the reflected waveforms using the built 
in microphone. These sounds are then analyzed and classi-
fied to infer some aspect of the environment. 
Our work was originally inspired by the field of soundscape 
ecology [18]. We learned that different environs (natural or 
otherwise) have significantly different acoustic properties— 
the composition and spatial configuration of flora and geo-
logical features act as acoustic filters, passing some sounds 
while attenuating others. This can introduce selective pres-
sure, leading to e.g., animals communicating using frequen-
cies that carry farthest in their habitats (see e.g., [5,12]). 

This inspired us to run experiments in our lab, sweeping 
through a range of frequencies emitted from a laptop, and 
looking at attenuation due to the environment. We noticed 
that changes in physical configuration could alter the signal, 
for example, a door being opened or the lid of our laptop 
being repositioned; it can even capture subtle relationships 
between wearable devices and the human body, such as 
knowing when headphone buds are removed from the ears.  
Such actions appear to expose different facets and/or mate-
rials, with different acoustic reflectance characteristics. Ad-
ditionally, in enclosed “chambers”, such as the ear canal, 
cars, rooms and similar, certain frequencies may become 
standing waves [6], with amplifying effects. Finally, a 
sound wave reflected off multiple surfaces will return to the 
microphone at different phases, producing characteristic 
interference effects. These effects all interact to produce a 
“sound signature”, which can be used for classification.  
RELATED WORK 
Modal analysis [2] and swept frequency acoustic interfer-
ometry (SFAI) are well known in fields such as material 
identification [21], structural analysis [7] and petrogeology 
[4]. In the HCI domain, acoustic-based input sensing can be 
categorized into three general approaches. First are time 
difference of arrival (TDoA) and time of flight (ToF) locali-
zation techniques, most commonly in the form of “sonar,” 
which has seen extensive use (see e.g., [19,23]). Additional-
ly, sensing acoustic Doppler shifts [1] has also proven to be 
useful (see also [24] for an overview).  
More similar to our approach are acoustic fingerprint-based 
techniques, which use an uncontrolled, but characteristic 
signal to distinguish between possible states. Approaches 
can be active—as in the case of Mujibiya et al. [15] and 
Takemura et al. [22]–or passive, such as Skinput [10].  
Conceptually related to our approach is Touch & Activate 
[16], which enabled ad-hoc touch sensing on objects using 
swept frequency vibrations. In contrast to our technique, the 
latter used a piezo contact microphone and a piezo buzzer 
physically attached to an object and relied chiefly on physi-
cal resonance (as opposed to reflectance). The authors cite 
Touché [20] as inspiration, which used swept frequency 
electrical signals for ad hoc capacitive sensing. As dis-
cussed in both papers, applications can often suffice without 
a full sweep. However, this requires a priori knowledge of 
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discriminative frequency bands in different contexts, which 
precludes general and immediate use.  

SWEEPSENSE 
Our approach, which we call SweepSense, can open new 
interactive opportunities in contexts where there are speak-
ers and microphones present. Using a device’s built-in 
speaker, we emit a repeating 20ms ultrasound linear fre-
quency sweep. Acoustic sweeps can be generated program-
matically (e.g., using various audio APIs such as minim, 
and BASS audio I/O) or pre-cached using synthesis soft-
ware (e.g., Audition, Audacity). Further, we use low-level 
audio API calls (e.g., using callbacks whenever audio sam-
ples are captured) to more closely monitor incoming data 
from the microphone. Most audio APIs expose these types 
of callbacks, such as the sample(float[]) function call in 
minim, or the setRenderCallback() in iOS CoreAudio. 
Meanwhile, captured audio samples are stored in a circular 
buffer (~100ms or less), where frequency analysis and ma-
chine learning are eventually performed. 
Next, the captured signals are transformed into frequency 
space using a Fast Fourier Transform (FFT) and only the 
inaudible spectrum components of interest are saved (e.g., 
20-40kHz for a device capable of sampling at 96kHz). In 
addition to the raw FFT values, we also compute a series of 
standard features (derived from [17]): RMS, average power, 
spectral center of mass, max/min index and values, standard 
deviation, and spectral band ratios. These features are 
passed to a Sequential Minimal Optimization-based Support 
Vector Machine (SMO-SVM), provided by the Weka 
Toolkit [9]. Note that this model must be trained with data 
before it can provide real-time classification. 

EXAMPLE IMPLEMENTATIONS 
We implemented two illustrative applications as self-
contained demos. These represent different scales of use, 
and serve as examples of discrete and continuous sensing.  
Discrete Sensing: Smart Ear Buds 
SweepSense may be useful in small-scale applications, such 
as ear buds (Figure 1). For example, when both ear buds are 
in, music plays as usual. However, if both ear buds are re-
moved, the music can be automatically paused. Also, a 
phone call could be answered by removing a single bud.  
Implementation. For our ear bud application, we used a pair 
of generic, Samsung in-ear headphones. To avoid crosstalk, 
we emit a 20 to 22kHz sweep through the left ear bud and a 

23 to 25kHz sweep through the right bud. These head-
phones contain an integrated microphone approximately 
20cm down the cord, which we use to capture sound. Using 
this setup, we can detect four possible states: 1) both buds 
in, 2) left bud out, 3) right bud out, and 4) both buds out 
(Figure 1 and Video Figure). We used a SVM model trained 
using Weka’s Quad SMO [9] with default parameters.  
Other researchers have achieved similar functionality, but 
only through additional hardware. For example, small ca-
pacitive sensors can be added to ear buds to detect skin con-
tact, as demonstrated in Buil et al. [3]. Metzger et al. used 
infrared proximity sensors [14] to detect gestures performed 
around the ear. Most recently, Manabe and Fukumoto [13] 
showed that a low cost supplementary circuit could be used 
to detect physical taps on headphones, which physically 
actuate the speaker diaphragm. SweepSense achieves 
equivalent functionality and could be integrated to existing 
devices with just a simple software update. 
Continuous Sensing: Laptop Lid Configuration 
Contemporary laptops use a special purpose sensor to detect 
lid configuration, but this is presently limited to detecting 
open or closed states (i.e., binary). SweepSense could be 
used to infer continuous angular position of the lid without 
any hardware modification (Figure 2). This could be used, 
for example, to lock the screen when the lid is lowered, or 
to sense lid-based gestures e.g., leaning backward to trigger 
full-screen, or wiggling to minimize windows. 
Implementation. For our laptop lid angle application, we 
emit a continuous 20-40kHz sweep from a 2013 MacBook 
Air’s 2013 built-in speakers (located where the display 

 
Figure 2. SweepSense can infer continuous laptop lid angle. Here the lid is positioned at 100, 70, 50 and 30° (A-D); Sweepsense re-

ports 97, 70, 51 and 30° respectively. Far right (E), a 1Hz “wiggle” gesture is performed and visible in the raw signal. 

 
Figure 1. SweepSense can detect whether (A) both ear buds 

are in, (B) left is out, (C) right is out, or (D) both are out. 

 



meets the main chassis). The microphone is located on the 
left side bezel of the base. Our machine learning setup uses 
an SVM regression model with a radial basis function ker-
nel (γ=0.01), trained using Weka’s SMOReg implementa-
tion [9] using default optimization parameters. Our regres-
sion model was trained to infer angular positions between 
30° and 110°, allowing our system to behave like a virtual 
lid angle sensor (see Fig. 2 and Video).  
We note that although lid sensing can be achieved using 
accelerometers, it is rare for laptop lids to have accelerome-
ters solely for this purpose. Meanwhile, most laptops have a 
speaker and microphone. Thus, SweepSense brings new 
capabilities through software, and more critically, without 
any additional hardware. 
USER STUDY 
We sought to evaluate the feasibility of our approach 
through multiple user studies. In response, we recruited two 
separate groups of participants, (32 total, 11 female, mean 
age=24, STDEV=5.5), and each experiment took about 30 
minutes. All participants were paid $10 for their time. This 
section describes the studies in detail. 
Ear Bud Experiment 
To evaluate ear bud configuration sensing, we had 24 par-
ticipants (9 female, mean age=24) use our off-the-shelf, 
Samsung-branded in-ear headphones in two different loca-
tions: a large, open social area in an academic building and 
a medium-sized office (12 participants for each location). 
Although we created an iOS version of our SweepSense 
recognizer (Figure 1 and Video Figure), we used a laptop to 
run the experiment. To better emulate real-world use, music 
was played in the ear buds throughout the experiment. 
Following a brief explanation, participants were asked to 
replicate a series of ear bud configurations (depicted in Fig-
ure 1), which were shown as photographs on the laptop 
screen. Each configuration was requested five times in a 
random order (during which time ten classifications were 
made over a ten second period). Of note, the system per-
formed live classification with no per user training or cali-
bration. In total, we collected 1200 classification attempts 
for each configuration. Overall accuracy was 94.8% 
(SD=1.3%); Table 1 provides a confusion matrix. 
Laptop Lid Angle Experiment 
For the ear bud experiment, it was important to capture test 
data from a variety of users, as everyone’s ears are different. 
However, since the laptop was constant in this experiment, 
we recruited a smaller pool of eight participants (2 female, 
mean age=25). Further, we wanted to test whether 
SweepSense could generalize across a range of environ-
ments. For this experiment, we used a classifier trained spe-
cifically for our MacBook Air 2013. Meanwhile, we visited 
participants in a location of their choosing, which included a 
variety of commonplace settings such as a cafe, study hall, 
food court, conference room, and shared lab space (mean 
ambient noise 55.6dB, SD=5.72dB). Overall, we found no 
significant effect based on location. 

In this experiment, a small protractor was placed along the 
right side of the laptop, near the hinge, allowing participants 
to accurately orient the lid to any requested angle. A ran-
domized list of angles from 30° to 110° in 10 degree incre-
ments was requested verbally (e.g., “please set the lid to 60 
degrees”). Each angle appeared twice, for a total of 18 tri-
als. Once the participant was satisfied with their lid posi-
tioning, 20 angular estimates (captured over a period of 
approximately three seconds) were made using the pre-
trained classifier and averaged to produce a final estimate. 
Results show that the mean angular error was ±4.1° 
(SD=1.7°) for angles between 30°-100°, summarized in 
Figure 4. Note that error increases substantially beyond 
100°, which we hypothesize is due to the screen no longer 
strongly participating in reflecting sound downwards to-
wards the microphone (i.e., sound mostly emanates away 
from the laptop). Finally, our regression model achieved a 
correlation coefficient (R2) of 0.988, evaluated using 10% 
of the dataset we withheld for testing. 
DISCUSSION 
There are several drawbacks of note. One is our dependence 
on low frequency ultrasound, which may be audible to chil-
dren, some adults and pets. However, the technique is not 
reliant on any single frequency, and our machine learning 
approach makes it easy to increase the lower bound fre-
quency assuming the hardware supports it. In practice, this 
audibility issue does not appear to be a critical problem giv-
en that ultrasonic sensors have enjoyed commercial success 
for decades (e.g., automatic door openers) without issue.  
Secondly, we found that many devices do not support high 
sampling rate audio output (we utilized 96kHz for our lap-
top example, but found that 44.1kHz is a more common 
upper bound). This reduces audio output fidelity, especially 
in the ultrasonic range. However, systems today are not 
engineered for this purpose, and so with purposeful integra-
tion, higher ultrasound frequencies might be better support-
ed for applications like we suggest in the future. 

 
Figure 4. Our regression model can predict laptop lid  

angle. Below 100°, the mean angular error is +4.1°. 
 

 Both-in Left-out Right-out Both-out Accuracy 
Both-in 1150 15 28 7 95.8% 
Left-out 70 1112 1 22 92.7% 

Right-out 5 0 1142 53 95.2% 
Both-out 1 0 51 1148 95.7% 

Table 1. Confusion matrix for earbud placement classification. 

 



Finally, acoustic leakage is another issue. For example, if 
ear buds are partially inserted, our classifiers will struggle to 
make accurate predictions. More training data would help, 
but as with other classification systems, this may be a sig-
nificant challenge. Finally, classifiers may need to be device 
and model specific—for example, our MacBook lid angle 
demo is not immediately portable to a Dell laptop.  
In general, SweepSense introduces interactive opportunities 
in environments where speakers and microphones are pre-
sent. One possibility for future work is in living rooms, 
which often contain speakers for entertainment and where 
microphones are increasingly common (e.g., Microsoft Ki-
nect, Smart TVs). This could allow, for example, occupant 
sensing and detecting whether people are sitting or standing, 
which could be used to e.g., intelligently pause media.  
Meanwhile, vehicles generally contain speaker systems, and 
increasingly feature microphones for Bluetooth-connected 
telephony and voice navigation functions. SweepSense 
could allow for occupancy sensing in all seats, enabling 
e.g., richer safety applications. Few cars today track the 
status of their windows, and typically only know if doors 
are opened or closed. With SweepSense, cars could infer the 
analog state of both windows and doors (albeit susceptible 
to noise in certain cases). 

CONCLUSION 
Uniquely, and in contrast to prior work, SweepSense uses 
in-air, reflected, swept-frequency ultrasound. This approach 
adds to a growing body of work that can take advantage of 
devices’ existing speakers and microphones, allowing such 
techniques to be deployed with a simple software update. In 
the future, we hope to explore larger contexts that have 
speakers and microphones, such as public address (PA) sys-
tems in subway stations and supermarkets, and sound sys-
tems at concert venues and stadiums. 
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