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Figure 1. SurfaceSight enriches Internet-of-Things (IoT) experiences with touch, user, and object sensing. This is achieved by 
adding LIDAR to devices such as smart speakers (A). Next, we perform clustering and tracking (B), which unlocks novel 
interactive capabilities such as object recognition (C), touch input (D), and person tracking (E). 

ABSTRACT 
IoT appliances are gaining consumer traction, from smart 
thermostats to smart speakers. Tese devices generally have 
limited user interfaces, most ofen small butons and 
touchscreens, or rely on voice control. Further, these de-
vices know litle about their surroundings – unaware of 
objects, people and activities happening around them. Con-
sequently, interactions with these “smart” devices can be 
cumbersome and limited. We describe SurfaceSight, an ap-
proach that enriches IoT experiences with rich touch and 
object sensing, offering a complementary input channel and 
increased contextual awareness. For sensing, we incorpo-
rate LIDAR into the base of IoT devices, providing an 
expansive, ad hoc plane of sensing just above the surface on 
which devices rest. We can recognize and track a wide array 
of objects, including finger input and hand gestures. We can 
also track people and estimate which way they are facing. 
We evaluate the accuracy of these new capabilities and il-
lustrate how they can be used to power novel and 
contextually-aware interactive experiences. 
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1 INTRODUCTION 
Small, internet-connected appliances are becoming increas-
ingly common in homes and offices, forming a nascent, 
consumer-oriented “Internet of Tings” (IoT). Product cate-
gories such as smart thermostats, light bulbs and speakers 
have shipped tens of millions of units in 2018 [9], with sales 
predicted to increase dramatically in the coming years. 

Input on these devices tends to fall into one of three cat-
egories. First, we have products with extremely limited or 
no on-device input, which require an accessory physical re-
mote or smartphone app for control (e.g., Apple TV, Philips 
Hue bulbs). Second, and perhaps most pervasive at present, 
is for devices to offer some physical controls and/or a 
touchscreen for configuration and control (e.g., Nest Ter-
mostat, smart locks, smart refrigerators). Finally, there are 
“voice-first” interfaces [62] (e.g., Google Home, Amazon 
Alexa, Apple HomePod). Regardless of the input modality, 
the user experience is generally recognized to be cumber-
some [49], with both small screens and voice interaction 
having well-studied HCI botlenecks. 

Another long-standing HCI research area and drawback 
of current generation consumer IoT devices is a limited 
awareness of context [1, 50]. An archetype of this 
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interactive shortfall is a smart speaker siting on a kitchen 
countertop, which does not know where it is, nor what is 
going on around it. As a consequence, the device cannot 
proactively assist a user in tasks or resolve even rudimen-
tary ambiguities in user questions. 

In this work, we investigate how the addition of low-
cost LIDAR sensing into the base of consumer IoT devices 
can be used to unlock not only a complementary input 
channel (expansive, ad hoc touch input), but also object 
recognition and person tracking. Taken together, these ca-
pabilities significantly expand the interactive opportunities 
for this class of devices. We illustrate this utility through a 
set of functional example applications, and quantify the per-
formance of main features in a multi-part study. 

2 RELATED WORK 
Our work intersects with several large bodies of HCI re-
search, including ad hoc touch sensing, tracking of both 
objects and people in environments, and around-device in-
teraction. We briefly review this expansive literature, 
focusing primarily on major methodological approaches. 
We then review other systems that have employed LIDAR 
for input and context sensing, as these are most similar to 
SurfaceSight in both function and operation. 

2.1 Ad Hoc Touch Sensing 
Research into enabling touch sensing on large, ad hoc sur-
faces (also referred to as “appropriated” interaction surfaces 
[20]) goes back at least two decades. By far, the most com-
mon approach is to use optical sensors, including infrared 
emiter-detector arrays [40], infrared cameras [23, 48], 
depth cameras [64, 66, 69] and thermal imaging [31]. Acous-
tic methods have also been well explored, using sensors 
placed at the periphery of a surface [22, 42] or centrally lo-
cated [68]. Large scale capacitive sensing is also possible 
with some surface instrumentation (which can be hidden, 
e.g., with paint), using discrete patches, tomographic imag-
ing [75], and projective capacitive electrode matrices [76]. 

2.2 Sensing Objects in Environments 
Many approaches for automatic object recognition have 
been explored in previous research. Typical methods in-
volve direct object instrumentation, such as fiducial 
markers [25], acoustic barcodes [19], RFID tags [36], Blue-
tooth Low Energy tags and NFCs [16]. Although direct 
object instrumentation can be robust, it incurs installation 
and maintenance costs. Another approach is to sparsely in-
strument the environment with cameras [30, 32], radar [72], 
microphones [52], or worn sensors [26, 27, 38, 58, 61]. Tese 
minimally invasive approaches provide a practical alterna-
tive for object and human activity recognition. 

2.3 Person Sensing and Tracking 
Many types of systems – from energy efficient buildings 
[37] to virtual agents [54] – can benefit from knowledge of 
user presence, identification, and occupancy load. As such, 
many methods have been considered over many decades. 

One approach is to have users carry a device such as a 
badge. Numerous systems with this configuration have 
been proposed, and they can be categorized as either active 
(i.e., badge emits an identifier [21, 60] ) or passive (i.e., badge 
listens for environment signals [13, 44]). Badge-based sens-
ing systems come in other forms, including radio frequency 
identification (RFID) tags [47], infrared proximity badges 
[60], microphones [21] and Bluetooth tags [53]. To avoid 
having to instrument users, researchers have also looked at 
methods including Doppler radar [46], RFID tracking [59] 
and co-opting WiFi signals [2, 45]. However, perhaps most 
ubiquitous are Pyroelectric Infrared (PIR) sensors, found in 
nearly all commercial motion detectors, which use the hu-
man body’s black body radiation to detect motion in a 
scene. Also common are optical methods, including infrared 
(IR) proximity sensors [3] and pose-driven camera-based 
approaches [6]. 

2.4 Around-Device Interactions 
Perhaps most similar to the overall scope of SurfaceSight is 
the subdomain of Around Device Interaction (ADI). Tis 
topic typically focuses on mobile and worn devices, and for 
capturing touch or gesture input. Several sensing principles 
have been explored, including acoustics [17, 41], hall-effect 
sensors [67], IR proximity sensors [5, 24, 29], electric field 
(EF) sensing [33, 77], magnetic field tracking [8, 18], and 
time-of-flight depth sensing [70]. Across all of these diverse 
approaches, the overarching goal is to increase input ex-
pressivity by leveraging the area around devices as an 
interaction surface or volume. Our technique adds to this 
rich body of prior work, adding a novel set of interaction 
modalities and contextual awareness capabilities. 

2.5 LIDAR 
Originally a portmanteau of light and radar, LIDAR uses the 
time-of-flight or parallax of laser light to perform range-
finding. First developed in the 1960s, the initial high cost 
limited use to scientific and military applications. Today, 
LIDAR sensors can be purchased for under $10, for example, 
STMicroelectronics’s VL53L0X [55]. Te later component 
is an example of a 1D sensor, able to sense distance along a 
single axis. Electromechanical (most ofen spinning) 2D 
sensor units are also popular, starting under $100 in single-
unit retail prices (e.g., YDLIDAR X4 360° [71]). Tis is the 
type of sensor we use in SurfaceSight. Prices are likely to 
continue to fall (with quality increasing) due to economies 
of scale resulting from extensive LIDAR use in robotics and 



  

     
    

    
        

    

     
         

       
     
           
       

    
    

       
    

     
  

        
        

         
    	

  
       

      

  
       

          
        

      
       

          
   

   
      

           
        

      

         
        

     	

  
    

     
        

        
  

        
        
         

      
      

    	
     

       
      

       
   

       
     

    
      

   
   	

   
           

   
          

    
       

	 	 	 	  
         

    
     

  

          
      

   

 
  

      
          

         
       

Figure 2. Each LIDAR rotational pass is slightly misaligned. 
We exploit this property by integrating data from multiple 
rotational passes. (A) shows a scene from a single pass, while 
(B) is integrated from 16 passes. Objects left to right: Mineral 
spirits can, user hand flat on surface, hammer, and bowl. 

autonomous cars [35]. Solid state LIDAR and wide-angle 
depth cameras are likely to supersede electromechanical 
systems in the future; the interaction techniques we present 
in this paper should be immediately applicable, and likely 
enhanced with such improvements. 

2.6 LIDAR in Interactive Systems 
Although popular in many fields of research, LIDAR is 

surprisingly uncommon in HCI research. It is most com-
monly seen in Human-Robot Interaction (HRI) papers, 
where the robot uses LIDAR data to e.g., track and approach 
people [34, 57, 74]. Of course, robots also use LIDAR for ob-
stacle avoidance and recognition, which has similarities to 
our object recognition and tracking pipeline. Most similar 
to SurfaceSight are the very few systems that have used 
LIDAR for touch sensing. Amazingly, one of the very earli-
est ad hoc touch tracking systems, LaserWall [43, 56], first 
demonstrated in 1997, used spinning LIDAR operating par-
allel to a surface. Since then, we could only find one other 
paper, Digital Playgroundz [15], that has used such an ap-
proach. Further afield is Cassinelli et al. [7], which uses a 
steerable laser rangefinder to track a finger in mid-air. 

3 IMPLEMENTATION 
We now describe our full-stack implementation of Sur-
faceSight, from sensor hardware to event handling. 

3.1 Hardware 
For our proof-of-concept system, we use a Slamtech 
RPLIDAR A2 [50], which measures 7.6 cm wide and 4.1 cm 
tall. Tis is sufficiently compact so as to fit under most IoT 
devices (e.g., speakers, thermostats). We suspend the unit 
upside down from an acrylic frame to bring the sensing 
plane to 6.0 mm above the host surface. In a commercial 
embodiment, we envision the sensor being fully integrated 
into the base of devices, with a strip of infrared translucent 
material that hides and protects the sensor. 

Te Slamtech RPLIDAR A2 can sense up to 12 m (15 cm 
minimum) with its Class 1 (eye-safe), 785nm (infrared) la-
ser. Distance sensing is accurate to within ±3 mm at 

distances under 3 meters. We modified the device driver to 
rotate at maximum speed (12 Hz) and maximum sampling 
rate (4 kHz), providing an angular resolution of ~1.1°. 

3.2 Scene Subsampling 
Each LIDAR rotational pass is slightly misaligned, offering 
the ability to subsample object contours by integrating data 
from multiple rotational passes (Figure 2). Tis presents an 
interesting tradeoff: on one end of the spectrum, we can 
capture sparse contours that update as quickly as a single 
rotation (Figure 2A). On the other end, we can integrate 
many rotational passes to collect high quality, dense con-
tours (Figure 2B), which also permits the capture of smaller 
objects at longer distances. Tis, of course, incurs a non-
trivial time penalty, and also leaves behind “ghost” points 
whenever an object is moved. 

Fortunately, we can achieve the best of both worlds by 
maintaining two independent polar point cloud buffers, 
with different integration periods. First is our “finger” 
buffer, which integrates five rotations (i.e., 2.4 FPS) with an 
effective angular resolution of ~0.5°. We found this integra-
tion period offered the best balance between robustly 
capturing small fingers, while still offering interactive fram-
erate. Our second, “object” buffer, integrates 16 rotational 
passes (i.e., 0.75 FPS) for an effective angular resolution of 
~0.2°, which we found strikes a balance between update rate 
and object contour quality. 

3.3 Clustering 
We cluster our point clouds using a variant of the adaptive 
breakpoint detection (ABD) scheme introduced by Borges 
et al. [4]. Two points are part of the same cluster if their 
Euclidean distance falls below a dynamic, distance-based 
threshold, defined by the following formula: 

�"#$%&'()*+ = � ∗ �1 + � ∗ � + � 

where D is the distance in mm, and a, b, and c are empiri-
cally determined coefficients. We computed these values 
(a=5E-5, b=0.048, and c=18.46) by capturing pilot data in four 
commonplace environments with existing objects present. 

Figure 3. For each cluster, we transform all points into a lo-
cal coordinate system, rotate, and resample them for 
feature extraction. 



  

         
 

     
        

    
       

      
      

  	
       

  
        

       
       

        
         
      

       
      
       	

      
          
      

        
         

         
   

    
         

        
        

    
        
     

   

    
  

      
        
       

       
     

    
        

  
        

    
 

     
        

      
         

     
      

     
        

         
        

       
       

   
        

          
         

     
     

     
     
       

     
      
       

         

      
         

      
   

        
        

Te output of clustering is an array of objects, each contain-
ing a series of constituent points. 

3.4 Feature Extraction 
Once individual points have been grouped into a single 
cluster, we transform all points into a local coordinate sys-
tem, rotate the point cloud to align with the 0°-axis of the 
sensor, and resample the contour into a 64-point path (Fig-
ure 3, right). Tis helps homogenize object contours into a 
distance-from-sensor and rotation-invariant form. 

We then generate a series of cluster-level features that 
characterizes objects for recognition. Specifically, we com-
pute the following features for each cluster: area of 
bounding box, real world length of path, relative angle be-
tween consecutive points, and angles between each point 
relative to the path centroid. Next, we draw a line between 
the first and last point in a path, and compute the residuals 
for all intermediate points, from which we derive seven sta-
tistical values: min, max, mean, sum, standard deviation, 
range, and root-mean squared (RMS). Finally, we take every 
fourth residual and compute its ratio against all others. 

3.5 Object Classification & Viewpoint Invariance 
Before classification of clusters can occur, a model must be 
trained on objects of interest. To achieve viewpoint inde-
pendence, we capture training data from many viewpoints. 
We maintain a database of all previously seen object con-
tours (featurized), which allows us to compute an incoming 
contour’s nearest neighbor (linear distance function). In es-
sence, these viewpoints are treated as independent objects, 
that happen map to a single object class. If the contour is 
below a match threshold, it is simply ignored. If one or more 
matches are found, the contour proceeds to object classifi-
cation. Rather than use the nearest neighbor result, we 
found beter results when using a random forest classifier 
(batch size=100, max depth=unlimited, default parameters 
on Weka 11). 

3.6 Cluster Tracking 
Feature computation and classification occurs once, when a 
cluster is first formed. From that point on, the cluster is 
tracked across frames, and the classification result is carried 
forward. A persistent cluster ID is also important for track-
ing finger stokes and detecting gestures. For tracking, we 
use a greedy, Euclidean distance pairwise matching ap-
proach with a distance threshold. Although simple, it works 
well in practice. We maintain a movement history of 1.0 
seconds for all clusters, which provides trajectory infor-
mation. Our tracking pipeline is also responsible for 
generating on-down, on-move and on-lif events that trigger 
application-level interactive functions. 

Figure 4. SurfaceSight enables touch and gesture recogni-
tion. Here, we show SurfaceSight operating on a wall 
enabling buttons (A), sliders (B), swipe carousels (C), and 
two-handed gestures (D). 

3.7 Touch Input and Gesture Recognition 
Recognition of finger inputs is handled identically to other 
objects (as it has a distinctive shape and size), except that 
we use our high framerate “finger” buffer for tracking. Po-
sitional tracking immediately enables virtual widgets, such 
as butons on ad hoc surfaces (Figure 4A & B). As noted 
above, we maintain a one-second movement history for 
every cluster. In the case of finger inputs, we use this mo-
tion vector for stroke gesture recognition. We support six 
unistroke gestures: up, down, lef, and right swipes (Figure 
4C), as well as clockwise, and counter-clockwise rotations. 
For this, we used the $1 recognizer [65] by Wobbrock et al. 
In addition to motion gestures, SurfaceSight can also recog-
nize ten static hand poses (Figures 4D and 12): point, all 
fingers together, flat palm, fist, wall, corner, stop, ‘V’, circle, 
and heart. As these are whole-hand shapes, as opposed to 
motions, we register these contours in our system in the ex-
act same manner as physical objects. 

3.8 Person Tracking and Body Angle Estimation 
Finally, SurfaceSight can also recognize people as another 
special object class. Human contours are large, move in 
characteristic trajectories, and have different contours from 
most inanimate objects. We created three subclasses: body 
front, back, and side (Figure 5), which have unique contours. 
If we detect that a person is facing front, we perform an 

Figure 5. Our system can detect people and recognize differ-
ent sides of bodies (example contours in blue). 



  

         
       

      
          

          

      
         

    
     

      
    

    
      

         
         

         
          

      
    

        
         

  	

    
      

    
       

  
        

   
         

   
     

      

       
         
        

    
      

          
       

        

     
         

        

      
   

      
        

   

        
      
       

    

        
         
    
     

    

Figure 6. If SurfaceSight detects that a person is facing for-
wards, it also computes a body angle estimation. This extra 
contextual information could be used to e.g., enable voice 
interaction without a keyword when the user is sufficiently 
close and facing a device. 

extra step to estimate which angle they are facing. For this, 
we create a line between the first and last points in the clus-
ter, and project an orthogonal vector from the midpoint 
(Figure 6, botom row). From this data, it is also possible to 
atribute touch points to a person, as shown in Medusa [3]. 

3.9 Defining the Interactive Area 
Te planar sensing offered by LIDAR can easily identify 
concave adjoining surfaces, such as the transition from a 
countertop to backsplash, or desk to wall. However, convex 
discontinuities, such as the outer edge of countertop or 
desk, are invisible to the sensor. Tis edge represents an im-
portant functional boundary between “human” space 
(floors) and “object” space (raised surfaces). For example, 
you are likely to see a cross-section of a human torso out in 
a room, but not on a countertop. While it may be possible 
for the system to learn this boundary automatically, by 
tracking where objects appear over time, we leave this to 
future work. Instead, we built a rapid initialization proce-
dure, where users are requested to touch the outer 
perimeter of a work surface, on which we compute a convex 
hull. It is also possible to specify a fixed interactive radius, 
e.g., one meter. 

4 EXAMPLE APPLICATIONS 
SurfaceSight enables six input modalities: virtual widgets, 
static hand poses, finger motion gestures, object recogni-
tion, people tracking, and body angle estimation. Tese 
fundamental capabilities can be incorporated into a wide 
variety of end user applications. In this section we offer five 
example applications to illustrate potential uses, for both 
walls and horizontal surfaces. Please also see Video Figure. 

4.1 Thermostat 
We created a SurfaceSight-enhanced thermostat demo that 
responds to finger touches within a 1-meter radius (Figure 

Figure 7. Thermostat demo application. Tapping the wall 
wakes the device (A), and a dwell reveals more details (B). 
Motion gestures trigger specific commands, such as fined-
grained temperature adjustment (C) or swiping between 
different temperature presets (D). 

7). Picture frames, people leaning against the wall, and sim-
ilar non-finger objects are ignored. Tapping the wall wakes 
the device to display the current temperature, whereas a 
longer dwell reveals a more detailed HVAC schedule. 
Clockwise and counterclockwise circling motions adjust 
the desired temperature up or down. Finally, swipes to the 
lef and right navigate between different modes, such as eco 
mode, away from home, fast heat, and fast cool. 

4.2 Light switch 
As a second wall demo, we created an augmented light 
switch (Figure 8). Instead of a physical toggle buton, all 

Figure 8. Light switch demo application. Tapping the wall 
turns the light on (B), swipes reveal different lighting 
modes (C). Continuous up or down scrolling adjusts light-
ing illumination levels (D). 



  

          
     

         
     

      

    
          

      
           
   
    

          
         

       
       

       

           
     

         
     

        
      

    
 

          
        

           
    

     
         

      
         
           

       
       
       
        

   
      

      

         
          

      
          

      
       

        
        

         
       

       
      

        
         

    

interactions are driven through touches to the wall. A tap is 
used to toggle lights on or off. Sliding up and down func-
tions as a dimmer control. Finally, we detect lef and right 
swipes to move between lighting presets, such as incandes-
cent, daylight, evening, and theater modes. 

4.3 Recipe Helper 
We augmented an Amazon Alexa (Figure 9), which we can 
programmatically control through its Alexa Skills Kit API. 
We situated this on a kitchen countertop and built a recipe 
app demo that can recognize common kitchenware, includ-
ing mixing bowls, mortar, chopping board, and measuring 
cups of various sizes. If the recipe app requests an object as 
part of a recipe step (e.g., “retrieve the mixing bowl”), it au-
tomatically advances to the next instruction once that item 
is placed on the surface. Likewise, questions with an ambig-
uous object are assumed to be the last item that appeared or 

Figure 9. Recipe helper demo application. When a recipe is 
loaded, the system asks the user to retrieve necessary items 
(A), moving to the next step automatically upon detection 
(B). Contextual questions such as “how many ounces are in 
this” after putting down a measuring cup are possible (C). 
Swipe gestures move between recipe steps (D & E). When a 
user is finished with a step (e.g., mortar and pestle lifted 
from surface), the recipe can automatically advance (F). 

was moved by the user. As a demo, we implemented a “how 
many [units] are in this?” command. In our Video Figure, 
the user asks “how many ounces in this?” afer puting 
down a measuring cup. Finally, swiping lef or right allows 
the user to rapidly navigate between recipe steps, including 
the ability to replay the current step. 

4.4 Music Player 
We created a music player demo using an instrumented 
Google Home. Tis scans for phones resting nearby on the 
same surface (Figure 10), which is interpreted to be an ex-
plicit action by a user to connect the two devices. Tis is in 
contrast to e.g., automatic Bluetooth pairing, which might 
occur when the device is in the pocket of a nearby user. 
Once connected, music can be controlled by using the ta-
ble’s surface: tap to pause/play, lef and right swipes to 
move between songs, lef and right continuous motions to 
scrub inside of a song, and sliding up and down to control 
volume. As noted earlier, smart speakers have trouble with 
spoken input when playing content. In our demo, the music 
volume is momentarily halved when a user turns to face the 
Google Home, in anticipation of a spoken command. 

4.5 Conference Room 
Finally, we augmented a conference room speakerphone 
with SurfaceSight, allowing the conference table to become 

Figure 10. Music player demo application. When the smart 
speaker detects a smartphone on the table (A), audio 
streaming is initialized. Gestures such as double tap (B) and 
continuous scrolling (C) control audio playback and vol-
ume. The system also tracks the user’s body angle, lowering 
the playback volume if a user turns to the device in antici-
pation of a (wakeword-less) spoken command. 
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Figure 11. Conference room speakerphone augmented with 
SurfaceSight (A). Meeting participants can summon a cur-
sor when touching the table in front of them like a trackpad 
(B). Tapping the table toggles between cursor and draw 
modes (C). Participants can also move through the slide 
deck by tapping to their left and right (D). 

a collaborative tool (Figure 11). First, the system localizes 
meeting participants, and initializes virtual, interactive 
trackpads in front of each user. Touching this interactive 
region triggers a colored cursor to appear on a shared 
presentation (e.g., projected). Tapping the table toggles be-
tween cursor and draw modes, allowing users to point at or 
highlight information on the slides. Users can also collabo-
ratively control the slide deck by tapping to their lef or 
right extremes. 

EVALUATION 
In our evaluation, we sought to quantify four key questions: 
1) What is the system’s touch sensing accuracy? 2) How 
well does the system recognize static and dynamic hand 
gestures? 3) What is the accuracy of object detection across 
several commonplace use environments? 4) How accurate 
is person detection and body angle estimation? 

We recruited 14 participants (4 female, mean age 29.2), 
from a public participant pool. We collected self-reported 
height and weight in our demographics form, which al-
lowed us to estimate BMI (NIH formula). We had 8 normal 
weight, 4 overweight and 2 obese participants. We found no 
correlation in accuracy across any of our demographics and 
thus we only report combined results. Our first four studies 
were conducted on a generic wooden table, offering an 

interaction surface 90 × 210 cm. We placed our SurfaceSight 
prototype opposite participants, centered on the long edge 
of the table. To facilitate data capture, we installed a projec-
tor above the table in order to render automated visual 
instructions and targets for participants to follow (cali-
brated to SurfaceSight’s coordinate system). Te study 
lasted one hour and paid $10. 

5.1 Study #1: Touch Sensing 
To assess touch sensing accuracy, we designed a target ac-
quisition task, where participants were asked to touch the 
center of a crosshair (14×6 grid, 15 cm spacing, 84 positions 
total, random order). Users were allowed to use either hand 
interchangeably, and they were not required to remove ac-
cessories, jewelry, or make any clothing adjustments. For 
each trial, we measured the error between the crosshair po-
sition and our touch tracker’s output (i.e., cluster centroid). 
We ran data collection twice, once with participants using 
a single finger for input, and a second time with multiple 
fingers held together. 

Across 14 users and 2,300 cumulative touch trials, our 
system achieved a mean touch Euclidian distance error of 
±1.60 cm (SD=0.7). We found a linear relationship between 
touch error and the target’s distance from the sensor. Tere 
was no significant difference in spatial accuracy when using 
one or more fingers for input. However, in the single finger 
input condition, 9.2% (SD=5.9) of trials were missed on av-
erage (no touches were missed in the multiple finger input 
condition). Of the missed trials, 97% were on targets greater 
than 0.8m away, suggesting a drop in performance at longer 
ranges especially for small interactors such as a finger. 

5.2 Study #2: Motion Gestures 
We also investigated how well SurfaceSight could detect 
dynamic, motion gestures. For this task, we selected six di-
rectional swipes common in the literature: lef, right, up, 
down, clockwise, and counterclockwise. Participants per-
formed each gesture twice (in random order), on a 2×3 grid 
(same table as Study 1). Similar to our previous study, users 
were free to use either hand. In total, this procedure yielded 
6 gestures × 2 repeats × 6 grid locations × 14 participants = 
1008 trials. Gesture detection was performed live. 

Figure 12. The ten static hand poses used in the evaluation and their corresponding contours (variable scale). 



  

      
      

      
       

     
         

         
        

       
        

       
      

      
      

         
     

      
      

    
   	

         
      

         
       

  

   
           

     
     

           
        

      
       

         
  

          
      

      

   
        

       
        

     
     

 
                   
             

       
           

   

Figure 13. Kitchen object set used in the recognition evaluation. Here, we show the name, photo (not to scale), and ID of each 
object, along with their normalized-interpolated contour in blue (absolute scale, vertically oriented along principle axis). 

Across our 14 participants, SurfaceSight was able to cor-
rectly capture and classify motion gestures with an 
accuracy of 97.3% (SD=1.7), with most errors occurring at 
farther distances (consistent with the previous study result). 

5.3 Study #3: Static Hand Postures 
Beyond motion gestures, we also sought to evaluate how 
well our system can detect static hand poses. For this task, 
we asked users to perform ten static hand poses, which in-
cluded common single- and two-handed gestures (see e.g., 
[12, 63]), depicted in Figure 12. Tis study was segmented 
into two parts: training and testing. In the training phase, 
users performed all ten gestures in random locations across 
the table’s surface, and an experimenter segmented data to 
train a machine learning model (see Implementation 

Figure 14. Confusion matrix for kitchen objects. Object 
keys can be found in Figure 13. Mean accuracy across all 20 
objects is 94.2%. 

section). In the testing phase, a model was trained using the 
collected data and gesture classification was performed live 
by the system. Similar to the previous study, users were 
asked to perform all ten gestures (random order) on a 2×3 
grid. At each grid location, participants performed 10 static 
hand gestures = 60 trials total. 

Across 14 users and 840 cumulative gesture trials, our 
system was able to capture and classify static hand gestures 
with an accuracy of 96.0% (SD=3.0). We found no significant 
effect of distance, likely because hand gestures have much 
larger area than single fingers. 

5.4 Study #4: Body Angle 
Next, we sought to evaluate how well our system can detect 
a person and their body angle. For this study, we selected 
seven equally spaced locations around the lef, right, and 
botom edges of our test table. To request a location, we 
projected a 0.5 m semicircle on the table’s surface. We then 
projected a line radiating from the center of the circle (ran-
dom angle ±15°), indicating which way a participant should 
orient their body. We then recorded the angular difference 
between the target line and our system’s predicted body an-
gle. We repeated this process three times per location, for a 
total of 21 trials per participant. Similar to the previous 
studies, all predictions were performed live. 

Across 14 users and 294 trials, person localization was 
100% accurate (i.e., the system recognized a person was 
standing at the requested spot). For these trials, our system 
predicted body angle with a mean angular error of 3.0° 
(SD=3.7). We found no significant difference between loca-
tion/distance and body angle estimation accuracy. 



  

     
          

     
       

     
        

     
  

         
           

    

     
     

       
     

       

      
      
         

	
      

     
       

     
   

   
       

  	

   
          

      
    

      
         

     
     

     
   

          
       

  
      	
     

     
      

          
              

          

 
                   

          
Figure 15. Workshop object set. Similar to Figure 13, we show the name, photo (not to scale) and ID of each object, along 

with the normalized-interpolated contour in blue (absolute scale, oriented vertically along principle axis). 

5.5 Study #5: Object Recognition 
In our final study (no users involved), we assessed how well 
SurfaceSight can recognize objects based solely on their 
contours. For this, we collected 38 everyday objects from 
our building and split them into two functional categories: 
kitchen and workshop. While we did not reject any objects 
due to identical contours (we did not encounter any), we did 
curate this collection according to two criteria: 1) Diversity 
- we wished to show the breadth of our system’s recogni-
tion, and 2) Utility - we sought items that could be put 
together into interesting and illustrative example apps. 

Similar to the previous study procedures, we segmented 
this study into training and testing phases. In the training 
phase, we captured data for each object (different distances 
and angles), roughly 1000 instances per object. In the testing 
phase, we trained one model per category, and we 

Figure 16. Confusion matrix for workshop objects. Objects 
keys are in Figure 15. Accuracy across 18 objects is 91.8%. 

performed live object classification. In each trial, a random 
position, angle and object was requested (via projector). In 
total, we captured 1,140 trials (38 objects × 30 random posi-
tions/angles). 

Across all trials, SurfaceSight achieved an overall object 
recognition accuracy of 93.1% (SD=6.6). Recognition accu-
racy was 94.2% (SD=6.9) for kitchen objects, and 91.8% 
(SD=27.4) for workshop objects. Tese results highlight Sur-
faceSight’s ability to robustly infer objects based solely on 
their contours, creating opportunities for imbuing IoT de-
vices with contextual awareness that is difficult or 
impossible to achieve with existing methods. 

6 FAILURE MODES & LIMITATIONS 
Te biggest limitation of our system, and LIDAR in general, 
is occlusion. Everyday surfaces such as kitchen countertops, 
dining tables, and even walls are messy and rife with cluter. 
Relying solely on line-of-sight means that certain events of 
interest will be missed. We offer a few ways to address this 
limitation. First, designating the extents of an interactive 
area could enable the system to automatically monitor oc-
clusion and provide user feedback (i.e., a cluter detector). 
Second, we can leverage deep learning generative models 
(e.g., GANs [14, 73]) to “fill-in” gaps (e.g., when an object is 
partially blocked). Finally, we can take advantage of motion 
trajectories and perform tracking prediction (e.g., as shown 
by Ess et al. [10]) to mitigate occlusion effects. 

We are also limited by sensing geometry. LIDAR works 
best on level surfaces and its data is inherently planar. Fur-
ther, our LIDAR-based sensing approach is also constrained 
in the types of objects it can detect. We are subject to colli-
sions in object contours (i.e., similar shaped, but different 
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Figure 17. We can tag objects with retro-reflective barcodes, 
increasing the set of objects that can be detected. 

objects) and objects that do not reflect infrared. For exam-
ple, our system is unable to detect transparent materials 
(e.g., glass) or objects with highly specular surfaces (e.g., 
mirror finishes). One way to overcome this is to atach 
“tags” to objects, allowing them to reflect infrared. It is also 
possible to embed data into these tags, similar to a barcode. 
Figure 17 shows the signal received from two 8-bit tags we 
created. Such a method could also be used to disambiguate 
objects with identical contours (though we found this to be 
unexpectedly rare). 

It is also possible to leverage complementary sensors – 
such as panoramic cameras, depth cameras and sonar – to 
make SurfaceSight more capable and accurate. Of course, 
these sensors have their own limitations. For example, cam-
eras offer high-fidelity visual information, but must deal 
with variable lighting and scale, generally require more 
compute to process, and have privacy implications in e.g., 
the home. Depth cameras could conceivably be made with 
360° sensing ability, or several units could be used in con-
cert, and operate much like LIDAR. Sonar is a cheaper 
alternative, but it is imprecise for the types of applications 
we envision. LIDAR, in contrast, is robust across lighting 
conditions, works at long distances, and provides very ac-
curate contour data in a convenient form (i.e., a planar point 
cloud with real-world units). 

CONCLUSION 
SurfaceSight, using LIDAR, enables expressive input and 
enhanced contextual awareness, including the detection of 
objects, finger touches, hand gestures, people tracking, and 
body angle estimation. Our evaluations suggest immediate 
feasibility, and our example applications illustrate how Sur-
faceSight can be used to power novel, contextually-aware 
interactive experiences. 
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